

Proton-Induced Cis–Trans Conversion of a Platinum(II) Center Coordinated by L-Cysteinatocobalt(III) Metalloligands

Zentaro Matsumoto, Takashi Aridomi, Asako Igashira-Kamiyama, Tatsuya Kawamoto, and Takumi Konno*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Received February 10, 2007

Treatment of Λ_{L} -[Co(L-cys-*N*,*S*)(en)₂]⁺ (L-H₂cys = L-cysteine) with [PtCl₄]²⁻ in water, followed by the addition of acid, gave an S-bridged Co^{III}₂Pt^{II} trinuclear complex ([1]⁴⁺), which was reversibly converted to its deprotonated complex $([2]^{2+})$ in an aqueous solution. While [1]⁴⁺ formed only a trans isomer, [2]²⁺ existed as a mixture of trans and cis isomers. The selective formation of a cis isomer was achieved by treatment of [1]⁴⁺ or [2]²⁺ with phthalic acid in water, which afforded a unique Coll4Ptl2 hexanuclear complex ([3]⁴⁺). Complex [3]⁴⁺ was reverted back to [1]⁴⁺ by treatment with aqueous HCI, accompanied by the complete cisto-trans conversion.

In recent years, the design and control of the dynamics of molecules are a subject of increasing attention because of their potential utility in various applications such as molecular recognition and molecular switching.¹ One of the most wellknown dynamics of molecules involves cis-trans isomerism, which has attracted great interest in many fields ranging from inorganic to organic and biological chemistry.² In particular, considerable research efforts have been paid for the control of cis-trans isomerism in square-planer d⁸ metal complexes of palladium(II) and platinum(II).3 To date, a number of coordination systems of palladium(II) and platinum(II) that show cis-trans conversion in response to thermal and/or photochemical factors have been reported.⁴ Furthermore, recent studies have shown that allosteric interactions of alkali-

2968 Inorganic Chemistry, Vol. 46, No. 8, 2007

metal cations or inorganic anions lead to cis-trans conversion in palladium(II) coordination systems.⁵ On the other hand, similar allosteric interactions that induce cis-trans conversion have not been found in platinum(II) coordination systems so far, presumably because of the relative inertness of the platinum(II) coordination environment compared to the palladium(II) environment.⁶ Thus, the finding of new external factors that govern cis-trans isomerism of platinum-(II) systems is a challenging task that may contribute to the development of platinum-based pharmaceuticals and catalysts, as well as the fundamental coordination chemistry of platinum(II).⁷ In this paper, we report on a novel dichloroplatinum(II) coordination system derived from [PtCl₄]²⁻ and Λ_{L} -[Co(L-cys-*N*,*S*)(en)₂]⁺ (L-H₂cys = L-cysteine) that can act as an S-donating chiral metalloligand having a free carboxylate group.⁸ This system was found to exhibit novel cistrans conversion induced by protonation/deprotonation of a distant carboxyl group in the metalloligand (Scheme 1). Another cis-trans conversion accompanied by the linkage of two platinum(II) centers with the use of phthalate is also reported.

10.1021/ic070265f CCC: \$37.00

© 2007 American Chemical Society Published on Web 03/14/2007

^{*} To whom correspondence should be addressed. E-mail: konno@

ch.wani.osaka-u.ac.jp. (1) (a) Kruppa, M.; König, B. *Chem. Rev.* **2006**, *106*, 3520. (b) Kinbara, K.; Aida, T. Chem. Rev. 2005, 105, 1377. (c) Kovbasyuk, L.; Krämer, R. Chem. Rev. 2004, 104, 3161.

^{(2) (}a) Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475. (b) Engel, P. S. Chem. Rev. 1980, 80, 99. (c) Lummis, S. C. R.; Beene, D. L.; Lee, L. W.; Lester, H. A.; Broadhurst, R. W.; Dougherty, D. A. Nature 2005, 438, 248. (d) Melnic, M.; Holloway, C. E. Coord. Chem. Rev. 2006, 250, 2261.

^{(3) (}a) Aizawa, S.: Saito, K.: Kawamoto, T.: Matsumoto, E. Inorg. Chem. 2006, 45, 4859. (b) Koch, K. R.; Wang, Y.; Coetzee, A. J. Chem. Soc., Dalton Trans. 1999, 1013. (c) Menozzi, E.; Busi, M.; Ramingo, R.; Campagnolo, M.; Geremia, S.; Dalcanale, E. Chem.-Eur. J. 2005, 11, 3136. (d) Smith, D. C., Jr.; Gray, G. M. Inorg. Chem. 1998, 37, 1791. (e) Murdoch, S. del P.; Ranford, J. D.; Sadler, P. J.; Berners-Price, S. J. Inorg. Chem. 1993, 32, 2249.

^{(4) (}a) Hanekom, D.; McKenzie, J. M.; Derix, N. M.; Koch, K. R. Chem. *Commun.* 2005, 767. (b) Vicente, J.; Arcas, A.; Gálvez-López, M.-D.; Jones, P. G. *Organometallics* 2006, 25, 4247. (c) Pelczar, E. M.; Nytko, E. A.; Zhuravel, M. A.; Smith, J. M.; Glueck, D. S.; Sommer, R.; Incarvito, C. D.; Rheingold, A. L. Polyhedron 2002, 21, 2409. (d) Cusumano, M.; Guglielmo, G.; Ricevuto, V.; Sostero, S.; Traverso, O.; Kemp, T. J. J. Chem. Soc., Dalton Trans. 1981, 302. (e) Mok, C. Y.; Tan, S. G.; Chan, G. C. Inorg. Chim. Acta 1990, 176, 43.

^{(5) (}a) Yam, V. W.-W.; Lu, X.-X.; Ko, C.-C. Angew. Chem., Int. Ed. 2003, 42, 3385. (b) Lu, X.-X.; Tang, H.-S.; Ko, C.-C.; Wong, J. K.-Y.; Zhu, N.; Yam, V. W.-W. Chem. Commun. 2005, 767.

^{(6) (}a) Hughes, R. P.; Meyer, M. A.; Tawa, M. D.; Ward, A. J.; Williamson, A.; Rheingold, A. L.; Zakharov, L. N. Inorg. Chem. 2004, 43, 747. (b) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. 1973, 10, 335. (c) Real, J.; Prat, E.; Polo, A.; Alvarez-Larena, A.; Piniella, J. F. Inorg. Chem. Commun. 2000, 3, 221. (d) Duran, J.; Brugat, N.; Polo, A.; Segura, C.; Real, J.; Fontrodona, X.; Benet-Buchholz, J. Organometallics 2003, 22, 3432.

^{(7) (}a) Kostova, I. Recent Pat. Anti-Cancer Drug Discovery 2006, 1, 1. (b) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. *Inorg. Chem.* **2006**, *45*, 1399. (c) Anderson, G. K.; Cross, R. J. *J. Chem. Soc. Rev.* **1980**, *9*, 185.

^{(8) (}a) Konno, T.; Yoshimura, T.; Aoki, K.; Okamoto, K.; Hirotsu, M. Angew. Chem., Int. Ed. 2001, 40, 1765. (b) Konno, T.; Kawamoto, T.; Kuwabara, R.; Yoshimura, T.; Hirotsu, M. Chem. Lett. 2002, 31, 304. (c) Aridomi, T.; Kawamoto, T.; Igashira-Kamiyama, A.; Konno, T. Chem. Lett. 2005, 34, 292.

COMMUNICATION

Scheme 1. Cis-Trans Conversion between [1]⁴⁺, [2]²⁺, and [3]⁴⁺

The reaction of a dark-brown aqueous solution of Λ_L -[Co- $(L-cys-N,S)(en)_2$ ClO₄⁹ with K₂[PtCl₄] in a 2:1 molar ratio gave a red-brown solution, from which dark-red crystals ([1]- $Cl(ClO_4)_3$) were isolated by the addition of aqueous $HClO_4$.¹⁰ X-ray fluorescence spectrometry and elemental analytical data of this compound are in good agreement with a formula for a 2:1 adduct of [Co(L-Hcys)(en)₂]²⁺ and PtCl₂, and the presence of COOH groups is indicated by the IR spectrum that gives a ν (C=O) band at 1719 cm^{-1.11} The structure of [1]Cl(ClO₄)₃ was determined by single-crystal X-ray crystallography.¹⁰ As shown in Figure 1, $[1]^{4+}$ consists of two approximately octahedral Λ_{L} -[Co(L-Hcys-N,S)(en)₂]²⁺ units that are linked by a PtCl₂ moiety through Pt-S bonds, forming an S-bridged Co^{III}₂Pt^{II} trinuclear structure in [PtCl₂- $\{Co(L-Hcys-N,S)(en)_2\}_2\}^{4+.12}$ The coordination environment about the PtII atom is almost square-planar, coordinated by two S and two Cl atoms in a trans configuration [av Pt-S = 2.307(2) Å; Pt-Cl = 2.301(3) Å].

A similar 2:1 reaction of Λ_L -[Co(L-cys-N,S)(en)₂]ClO₄ with K₂[PtCl₄] in water, followed by the addition of aqueous LiClO₄ instead of HClO₄, afforded dark-red crystals of [2]- $Cl_{0.5}(ClO_4)_{1.5}$,¹⁰ the absorption and circular dichroism spectral features of which are very similar to those of $[1]Cl(ClO_4)_3$. This compound was also obtained by the recrystallization of [1]Cl(ClO₄)₃ from water at pH ~ 6 .¹⁰ It was shown that [2]²⁺ is a deprotonated form of $[1]^{4+}$ by the IR spectrum that gives a ν (C=O) band at 1630 cm⁻¹, besides X-ray fluorescence spectrometry and elemental analysis. Single-crystal X-ray analysis revealed that $[2]^{2+}$ contains cis and trans isomers of $(\Lambda_L)_2$ -[PtCl₂{Co(L-cys-*N*,*S*)(en)₂}₂]²⁺ (*cis*- and *trans*-[**2**]²⁺) in a 1:1 ratio (Figure 2).10 The S-bridged Co^{III}₂Pt^{II} trinuclear structure in *trans*- $[2]^{2+}$ is essentially the same as that of $[1]^{4+}$, except two pendant carboxyl groups are deprotonated. However, it is noticed that the Pt-S bond distances in *trans*- $[2]^{2+}$ [av 2.327(5) Å] are appreciably longer than those in $[1]^{4+}$ [av 2.307(2) Å], although the Pt–Cl bond distances in $[1]^{4+}$ [av 2.301(3) Å] and trans- $[2]^{2+}$ [av 2.297(3) Å] are similar to each other. In cis-[2]²⁺, the Pt^{II} atom is coordinated

- (11) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: New York, 1997.
- (12) In a crystal of [1]Cl(ClO₄)₃, each Co^{III}Pt^{II}Co^{III} trinuclear cation is connected with two neighboring trinuclear cations through two NH···O=C hydrogen bonds (3.026 Å) to form a 1D chain structure.

Figure 1. Perspective view of [1]⁴⁺.

Figure 2. Perspective view of $[2]^{2+}$. Hydrogen bonds are shown as dotted lines.

by two S and two Cl atoms in a square-planar geometry, like the Pt^{II} atom in *trans*-[**2**]²⁺, but two S atoms occupy cis positions, despite the bulkiness of the Λ_L -[Co(L-cys-*N*,*S*)-(en)₂]⁺ units. The Pt–Cl bond distances in *cis*-[**2**]²⁺ [av 2.326(4) Å] are ca. 0.03 Å longer than those in *trans*-[**2**]²⁺. This is indicative of the stronger trans influence due to thiolato donors relative to that due to chloro donors. Compatible with this, the Pt–S bond distances in *cis*-[**2**]²⁺.

The ¹³C NMR spectrum of $[2]Cl_{0.5}(ClO_4)_{1.5}$ in D₂O (pH \sim 6) exhibits two sets of carbon signals in a ca. 1:1 intensity ratio, consistent with the presence of cis and trans isomers in $[PtCl_2{Co(L-cys-N,S)(en)_2}_2]^{2+}$ (Figure 3). Notably, the intensity ratio of two sets of signals varied upon lowering of the solution pH, and only one set of signals appeared at pH \sim 1 after 2 days. The same ¹³C NMR spectral behavior was observed for $[1]Cl(ClO_4)_3$ in D₂O, giving two sets of signals with equal intensity at pH \sim 6 and a single set of signals at pH \sim 1. These results clearly indicate that [1]⁴⁺ and $[2]^{2+}$ are interconvertible with each other by changing the solution pH, accompanied by cis-trans conversion. It is considered that the S-bridged Co^{III}₂Pt^{II} structure prefers the trans configuration owing to the bulkiness of two Co^{III} metalloligands, as evidenced by the selective formation of a trans isomer for $[1]^{4+}$. The comparison of the crystal structures of $[1]^{4+}$ and *trans*- $[2]^{2+}$ indicates that the Pt-S bonds are elongated by the deprotonation of two Co^{III} metalloligands. This is suggestive of the increase of the mutual trans influence due to thiolato donors by the deprotonation, which induces trans-to-cis conversion to generate the 1:1 mixture of cis and trans isomers for $[2]^{2+}$.

⁽⁹⁾ Freeman, C.; Moore, C. J.; Jackson, W. G.; Sargeson, A. M. Inorg. Chem. 1978, 17, 3513.

⁽¹⁰⁾ See the Supporting Information.

Figure 3. ¹³C NMR spectra of $[2]^{2+}$ in D₂O adjusted to pH = 1, 2, or 6. Each spectrum was measured 2 days later after the adjustment of the pH.

Figure 4. Perspective view of [**3**]⁴⁺. Hydrogen bonds are shown as dotted lines.

To create an S-bridged Co^{III}₂Pt^{II} species that selectively produces a cis isomer, an aqueous solution of $[2]Cl_{0.5}(ClO_4)_{1.5}$ was reacted with phthalic acid, which has been shown to act as a O,O'-chelating ligand toward a platinum(II) center,¹³ in a 1:1 molar ratio at pH \sim 6. When the resulting dark-red reaction solution was allowed to stand at room temperature, after the addition of aqueous NaClO₄, dark-red crystals of [3](ClO₄)₄ were isolated.¹⁰ This compound was also obtained by the reaction of $[1]Cl(ClO_4)_3$ with phthalic acid under similar conditions.¹⁰ The presence of fully deprotonated L-cysteinate and phthalate ligands in $[3](ClO_4)_4$ was confirmed by IR and NMR spectroscopies. However, the elemental analytical data were not consistent with the formula for an expected 2:1:1 adduct but for a 4:2:1 adduct of [Co- $(L-cys-N,S)(en)_2$ ⁺, [PtCl]⁺, and phthalate. The structure of $[3]^{4+}$ was established by X-ray analysis for $[3](SO_4)_2$, which was isolated by using aqueous Na₂SO₄ instead of aqueous NaClO₄.¹⁰ As shown in Figure 4, $[3]^{4+}$ consists of two S-bridged Co^{III}₂Pt^{II} trinuclear units of [PtCl{Co(L-cys-*N*,*S*)- $(en)_2$ ³⁺ and a phthalate ligand. The phthalate ligand bridges two Pt^{II} atoms with the use of two COO⁻ groups [Pt-O =

2970 Inorganic Chemistry, Vol. 46, No. 8, 2007

2.061(5) Å], completing a unique $Co^{III}_4Pt^{II}_2$ hexanuclear structure in $[(PtCl)_2(pht-O,O') \{Co(L-cys-N,S)(en)_2\}_4]^{4+}$ (Pt···Pt = 4.510 Å). As far as we know, such a bridging coordination mode of phthalate toward platinum(II) centers has not been reported, and, furthermore, $[3]^{4+}$ is the first example of a structurally characterized platinum(II) species with phthalate. The PtII atom in each CoIII2PtII trinuclear unit adopts a squareplanar geometry with a cis configuration, coordinated by two S atoms from two deprotonated Co^{III} metalloligands, besides Cl and O atoms. In $[3]^{4+}$, the Pt-S bond distances trans to the O atom [2.272(2) Å] are the same as those trans to the Cl atom [2.272(2) Å]. This implies that the trans influence due to a carboxylato donor of phthalate is comparable with that due to a chloro donor and is thus weaker than that due to a thiolato donor. Because the phthalate ligand has a bridging coordination mode, a trans configuration is also possible for each Co^{III}₂Pt^{II} trinuclear unit. The selective isolation of the cis configurational Co^{III}₂Pt^{II} units in [3]⁴⁺ could be related to the presence of NH····Cl (3.185 Å) and NH···O (2.894 Å) hydrogen bonds in each Co^{III}₂Pt^{II} unit, together with the weaker trans influence due to chloro and carboxylato donors. The presence of NH···Cl (3.186 Å) hydrogen bonds between the two Co^{III}₂Pt^{II} units is also noticed in $[3]^{4+}$, which may account for the selective isolation of the cis configurational Co^{III}₂Pt^{II} units. Here, it should be noted that $[3]^{4+}$ is convertible to $[1]^{4+}$ and $[2]^{2+}$ by treatment with HCl and NaCl, respectively, which was evidenced by NMR spectroscopy. This is indicative of cis-to-trans conversion of the platinum(II) center due to the replacement of a coligand from phthalate to chloride (Scheme 1).

In summary, we showed that $[PtCl_4]^{2-}$ readily reacts with $\Lambda_{\rm L}$ -[Co(L-cys-N,S)(en)₂]⁺ to form an S-bridged Co^{III}₂Pt^{II} trinuclear complex with a [Pt^{II}Cl₂S₂] square plane bound by two [Co^{III}N₅S] octahedrons. The Co^{III}₂Pt^{II} trinuclear complex was successfully isolated as protonated and deprotonated forms, $[1]^{4+}$ and $[2]^{2+}$, which are interconvertible with each other by changes of the solution pH. Remarkably, $[2]^{2+}$ existed as a mixture of cis and trans isomers, while $[1]^{4+}$ formed only a trans isomer, representing the first example of cis-trans conversion of platinum(II) induced by the change of pH. Furthermore, the linkage of two deprotonated Co^{III}₂Pt^{II} trinuclear molecules with phthalate afforded a Co^{III}₄- Pt^{II}_{2} hexanuclear structure in [3]⁴⁺ having cis configurational $[Pt^{II}ClOS_2]$ planes, which is reverted back to $[1]^{4+}$ by treatment with HCl. Thus, trans-to-cis and cis-to-trans conversions of the platinum(II) center with two Λ_L -[Co(L $cys-N,S)(en)_2$ ⁺ metalloligands were fully controlled by the protonation/deprotonation of pendant carboxylate groups in combination with the choice of coligands, the result of which would provide a novel design concept for dynamic molecular systems.

Supporting Information Available: Crystallographic data in CIF format and detailed experimental and spectroscopic data in PDF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC070265F

 ^{(13) (}a) Brunner, H.; Arndt, M. R.; Treittinger, B. *Inorg. Chim. Acta* 2004, 357, 1649. (b) Kumar, L.; Puthraya, K. H.; Srivastava, T. S. *Inorg. Chim. Acta* 1984, 86, 173. (c) Scherer, O. J.; Hussong, K.; Wolmershäuser, G. J. Organomet. Chem. 1985, 289, 215.